Kneser Graphs and their Complements are Hyperenergetic

S. Akbari ^{a,b,*}, F. Moazami ^b, S. Zare ^b

^a Institute for Studies in Theoretical Physics and Mathematics,

P. O. Box 19395-5746, Tehran, Iran

^b Department of Mathematical Sciences, Sharif University of Technology,

P. O. Box 11365-9415, Tehran, Iran

†

Abstract. A graph G of order n is called hyperenergetic if E(G) > 2n - 2, where E(G) is the energy of G. In this paper it is shown that Kneser graph $K_{n:r}$ is hyperenergetic for any naturals n and $r \ge 2$ with $n \ge 2r + 1$. Also we prove that for $r \ge 2$, the complement of Kneser graph, $E(\overline{K_{n:r}})$, is hyperenergetic.

Keywords: Kneser graphs, hyperenergetic.
2000 Mathematics Subject Classification: 05C50, 15A18.

I. Introduction

Let G be a graph with n vertices, m edges and eigenvalues $\lambda_1, \ldots, \lambda_n$. The energy of G is defined as $E(G) = |\lambda_1| + \cdots + |\lambda_n|$. We call n the order of G. In chemistry, the energy of a graph is intensively studied since it can be used to approximate, the total π -electron energy of molecule.

In the theory of conjugated molecules the total π -electron energy and various "resonance energies" derived from it, plays an outstanding role, for more details see [3]. The graph G is said to be hyperenergetic if its energy exceeds the energy of K_n ; that is, if E(G) > 2n - 2. Otherwise, G is called non-hyperenergetic. The concept of hyperenergeticity was introduced first by I. Gutman, see [6]. In [7] I. Gutman conjectured that $E(G) \leq 2n - 2$ holds for all graphs with n vertices.

This conjecture is false. The first counterexample was found in 1986 using Cvetkovics's computer system graphs, see [2]. In 1998, by means of Monte Carlo construction of graphs with n vertices and $1, 2, ..., \frac{n(n-1)}{2}$ edges, it became clear that among graph with large number of edges

^{*}Corresponding author. Fax: +98-21-6005117.

 $[\]label{eq:condition} ^\dagger\textit{E-mail} \quad addresses: \qquad \texttt{s_akbari@sharif.edu} \quad (S. \quad Akbari), \qquad \texttt{sa_zare_f@yahoo.com} \quad (S. \quad Zare), \\ \text{farokhlagha_moazami@yahoo.com} \quad (F. \quad Moazami).$

there are numerous species whose energies are greater than 2(n-1). Almost in the same time the Indian mathematician Walinkar with coworkers communicated the first systematic construction of such graphs. It has been prove that for every $n \geq 8$, there exists a hyperenergetic graph of order n, see Corollary 7.8 of [4]. Hyperenergetic graphs are important because molecular graphs with maximum energy pertain to maximality stable π -electron systems.

The line graph L(G) of a graph G is constructed by taking the edges of G as vertices of L(G), and joining two vertices in L(G), whenever the corresponding edges in G have a common vertex. In [8] it is shown that if a graph of order n has more than 2n-1 edges, then its line graph is hyperenergetic. Thus the line graph of every k-regular graph with k>3 is hyperenergetic. Recently a very large number of papers on hyperenergetic graphs has been published, for instance see [4, 5, 6, 8, 10].

The Kneser graph $K_{n:r}$ is the graph whose vertices are the r-subsets of an n-set, with two vertices adjacent if and only if the sets are disjoint. In [9] it is shown that the eigenvalues of the Kneser graph $K_{n:r}$ are $(-1)^i \binom{n-r-i}{r-i}$ with multiplicity $\binom{n}{i} - \binom{n}{i-1}$, for $i = 0, 1, \ldots, r$. Thus $E(K_{n:r}) = \sum_{i=0}^r \binom{n}{i} - \binom{n}{i-1} \binom{n-r-i}{r-i}$.

We begin with the following lemma.

Lemma 1. If n = 2r + 1, then $E(K_{n:r}) = 2^{2r}$. Thus for $r \geq 4$, the Kneser graph $K_{n:r}$ is hyperenergetic.

Proof. We have

$$E(K_{n:r}) = \sum_{i=0}^{r} \left(\binom{n}{i} - \binom{n}{i-1} \right) \binom{n-r-i}{r-i}.$$

This follows that for n = 2r + 1,

$$E(K_{n:r}) = \sum_{i=0}^{r} {2r+1 \choose i} (r+1-i) - \sum_{i=0}^{r} {2r+1 \choose i-1} (r+1-i) =$$

$$(r+1) {2r+1 \choose r} - r {2r+1 \choose r} + \sum_{i=0}^{r} {2r+1 \choose i-1} = \sum_{i=0}^{r} {2r+1 \choose i} =$$

$$\sum_{i=0}^{r} {2r+1 \choose i} + \sum_{i=r+1}^{2r+1} {2r+1 \choose 2r+1-i} - \sum_{i=r+1}^{2r+1} {2r+1 \choose 2r+1-i} = 2^{2r+1} - \sum_{i=0}^{r} {2r+1 \choose i}.$$

Therefore we obtain that $E(K_{n:r}) = 2^{2r}$.

Now, by induction on r, it is not hard to see that

$$2^{2r} > 2\binom{2r+1}{r} - 2.$$

In the next theorem we show that almost all Kneser graphs are hyperenergetic.

Theorem 1. For any natural numbers, $r \geq 2$ and $n \geq 2r + 2$, the Kneser graph $K_{n:r}$ is hyperenergetic.

Proof. If r = 2, then we have $E(K_{n:2}) = 2(n-1)(n-3)$. By assumption $n \ge 6$ and so $2(n-1)(n-3) > 2(\binom{n}{2}-1)$.

If r = 3, then by an easy calculation we find that $E(K_{n:3}) = \frac{4}{3}(n-1)(n-3)(n-5)$. Now, since $n \ge 8$, we have $E(K_{n:3}) > 2(\binom{n}{3}-1)$.

Now we consider two following cases:

Case 1. $2r + 2 \le n \le 3r - 1$. Since the following inequality holds

$$\binom{n-r}{r} \ge \binom{n-r-1}{r-1} \ge \dots \ge n-2r+1 \ge 3 \tag{1}$$

we have

$$E(K_{n:r}) = \sum_{i=0}^{r} \left(\binom{n}{i} - \binom{n}{i-1} \right) \binom{n-r-i}{r-i} \ge 3 \sum_{i=0}^{r-1} \left(\binom{n}{i} - \binom{n}{i-1} \right) + \binom{n}{r} - \binom{n}{r-1} = \binom{n}{r} + \frac{2r}{n-r+1} \binom{n}{r}.$$

Because of $n \leq 3r - 1$, we have $\frac{2r}{n-r+1} \geq 1$. So $E(K_{n:r}) \geq 2\binom{n}{r} > 2(\binom{n}{r} - 1)$.

Case 2. $n \ge 3r - 1, r \ge 4$. It is easy to see that

$$\binom{n}{i} - \binom{n}{i-1} \ge \frac{1}{2} \binom{n}{i}.$$

Therefore

$$E(K_{n:r}) \ge \frac{1}{2} \sum_{i=0}^{r} \binom{n}{i} \binom{n-r-i}{r-i}.$$

It is not hard to see that

$$\binom{n}{r-2}\binom{n-2r+2}{2} \ge 3\binom{n}{r-1}.$$

For the proof of the above inequality it is sufficient to show that

$$\frac{r-1}{2} \frac{(n-2r+2)(n-2r+1)}{n-r+2} \ge 3.$$

Since $\frac{r-1}{2} \ge \frac{3}{2}$ and $\frac{(n-2r+2)(n-2r+1)}{n-r+2} \ge 2$, the above inequality holds.

Thus

$$E(K_{n:r}) \ge \frac{1}{2} \left(\binom{n}{r} + \binom{n}{r-1} (n-2r+4) \right).$$

We claim that $\binom{n}{r-1}(n-2r+4) \geq 3\binom{n}{r}$.

To prove the above inequality it is enough to show that $n(r-3)-2r^2+7r-3 \ge 0$. Since $n \ge 3r-1$ we have $n(r-3)-2r^2+7r-3 \ge r^2-3r \ge 0$. Hence we conclude that

$$E(K_{n:r}) \ge 2\binom{n}{r} > 2(\binom{n}{r} - 1).$$

П

Lemma A. [1, p. 56] If G is regular graph of degree k of order n, then

$$P_{\overline{G}}(\lambda) = (-1)^n \frac{\lambda - n + k + 1}{\lambda + k + 1} P_G(-\lambda - 1),$$

which \overline{G} is complement of G.

By Lemma A the complement of Kneser graph, $\overline{K_{n:r}}$, has eigenvalues $\lambda_0 = \binom{n}{r} - \binom{n-r}{r} - 1$ and $\lambda_i = -1 - (-1)^i \binom{n-r-i}{r-i}$ with multiplicity $\binom{n}{i} - \binom{n}{i-1}$, for $i = 1, \ldots, r$.

Now using the previous lemma we prove that the complement of Kneser graphs are hyperenergetic.

Theorem 2. The complement of the Kneser graph for $r \geq 2$ is hyperenergetic.

Proof. If r = 2, then $E(\overline{K_{n:2}}) = L(K_n)$. Therefore by Proposition 7.2 of [4], $E(\overline{K_{n:2}})$ is hyperenergetic. Let r = 3, it is not hard to see that $E(\overline{K_{n:3}}) = n(n-3)(n-4)$, so $E(\overline{K_{n:3}}) > 2(\binom{n}{3}-1)$. Now suppose that r > 3 we have

$$E(\overline{K_{n:r}}) = \binom{n}{r} - \binom{n-r}{r} - 1 + \sum_{i=1}^{r} \left(\binom{n}{i} - \binom{n}{i-1} \right) \binom{n-r-i}{r-i} + \sum_{i=1}^{\lfloor \frac{r}{2} \rfloor} \left(\binom{n}{2i} - \binom{n}{2i-1} \right) - \sum_{i=0}^{\lceil \frac{r}{2} \rceil - 1} \left(\binom{n}{2i+1} - \binom{n}{2i} \right).$$

If r is even, then we have

$$E(\overline{K_{n:r}}) = E(K_{n:r}) - 2\binom{n-r}{r} + 2\sum_{i=1}^{r} (-1)^{i} \binom{n}{i}$$

and if r is odd, then

$$E(\overline{K_{n:r}}) = E(K_{n:r}) - 2\binom{n-r}{r} + 2\sum_{i=1}^{r-1} (-1)^i \binom{n}{i}.$$

Thus by Theorem 1, it is sufficient to show that for even r, $-2\binom{n-r}{r}+2\sum_{i=1}^r(-1)^i\binom{n}{i}\geq 0$ and for odd r, $-2\binom{n-r}{r}+2\sum_{i=1}^{r-1}(-1)^i\binom{n}{i}\geq 0$. By induction on r one can easily see that $\sum_{i=0}^r(-1)^i\binom{n}{i}=(-1)^r\binom{n-1}{r}$. Now, the proof is complete.

Acknowledgment. The authors are deeply grateful to Ivan Gutman for encouragement and for many helpful comments in the preparation of this paper.

References

- [1] D. Cvetković, M. Doob, H. Sachs, Spectra of graphs, Academic Press, New York, 1979.
- [2] D. Cvetković, I. Gutman, The computer system GRAPH: A useful tool in chemical graph theory, J. Comput. Chem. 7 (1986) 640-644.
- [3] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π -electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005) 441-456.
- [4] I. Gutman, The energy of graph: old and new results, in: A. Betten, A. Kohnert, R. Laue. A. Wassermann(Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, 196-211.
- [5] I. Gutman, Y. Hou, H. B. Walikar, H. S. Ramane, P. R. Hampiholi, No Hückel graph is hyperenergetic, J. Serb. Chem. Soc. 65 (2000) 799–801.
- [6] I. Gutman, Hyperenergetic molecular graphs, J. Serb. Chem. Soc. 64 (1999) 199-205.
- [7] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszentrum Graz 103(1978), 1–22.
- [8] Y. Hou, I. Gutman, Hyperenergetic line graphs, MATCH Commun. Math. Comput. Chem. 43 (2001) 29–39
- [9] P. Reinfeld, Choromatic polynomials and the spectrum of the Kneser graph, Preprint.
- [10] D. Stevanović, I. Stanković, Remarks on hyperenergetic circulant graphs, Lin. Algebra Appl. 400 (2005) 345–348.