Kneser Graphs and their Complements are Hyperenergetic
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Abstract. A graph G of order n is called hyperenergetic if E(G) > 2n — 2, where E(G) is
the energy of G. In this paper it is shown that Kneser graph K., is hyperenergetic for any
naturals n and r > 2 with n > 2r+ 1. Also we prove that for » > 2, the complement of Kneser

graph, E(K.,), is hyperenergetic.
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I. Introduction

Let G be a graph with n vertices, m edges and eigenvalues A1,...,A,. The energy of G is
defined as E(G) = [A1| + -+ -+ |\n]. We call n the order of G. In chemistry, the energy of a graph
is intensively studied since it can be used to approximate, the total m-electron energy of molecule.

In the theory of conjugated molecules the total m-electron energy and various “resonance ener-
gies” derived from it, plays an outstanding role, for more details see [3]. The graph G is said to
be hyperenergetic if its energy exceeds the energy of K, ; that is, if E(G) > 2n — 2. Otherwise, G
is called non-hyperenergetic. The concept of hyperenergeticity was introduced first by I. Gutman,
see [6]. In [7] I. Gutman conjectured that E(G) < 2n — 2 holds for all graphs with n vertices.

This conjecture is false. The first counterexample was found in 1986 using Cvetkovics’s com-
puter system graphs, see [2]. In 1998, by means of Monte Carlo construction of graphs with n

vertices and 1,2, ..., @ edges, it became clear that among graph with large number of edges
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there are numerous species whose energies are greater than 2(n —1). Almost in the same time the
Indian mathematician Walinkar with coworkers communicated the first systematic construction of
such graphs. It has been prove that for every n > 8, there exists a hyperenergetic graph of order
n, see Corollary 7.8 of [4]. Hyperenergetic graphs are important because molecular graphs with
maximum energy pertain to maximality stable m-electron systems.

The line graph L(G) of a graph G is constructed by taking the edges of G as vertices of L(G),
and joining two vertices in L(G), whenever the corresponding edges in G have a common vertex.
In [8] it is shown that if a graph of order n has more than 2n — 1 edges, then its line graph
is hyperenergetic. Thus the line graph of every k-regular graph with £ > 3 is hyperenergetic.
Recently a very large number of papers on hyperenergetic graphs has been published, for instance
see [4, 5, 6, 8, 10].

The Kneser graph K,., is the graph whose vertices are the r-subsets of an n-set, with two
vertices adjacent if and only if the sets are disjoint. In [9] it is shown that the eigenvalues of
the Kneser graph K, are (—1)*("_""") with multiplicity (7) — (,",), for i = 0,1,...,r. Thus
E(Knr) = Xizo((7) = (I (1)

We begin with the following lemma.

Lemma 1. Ifn = 2r + 1, then E(K,.,) = 2?". Thus for r > 4, the Kneser graph K., is
hyperenergetic.

Proof. We have
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Therefore we obtain that E(K,..) = 22"

Now, by induction on r, it is not hard to see that
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In the next theorem we show that almost all Kneser graphs are hyperenergetic.

Theorem 1. For any natural numbers, r > 2 and n > 2r + 2, the Kneser graph K,., is hyperen-
ergetic.

Proof. If r = 2, then we have E(K,.2) = 2(n — 1)(n — 3). By assumption n > 6 and so
2(n —1)(n—3) >2((3) — 1).

If r = 3, then by an easy calculation we find that E(K,.3) = 4(n—1)(n—3)(n—>5). Now, since
n > 8, we have E(Ky.3) > 2((3) — 1).

Now we consider two following cases:

Case 1. 2r +2 < n < 3r — 1. Since the following inequality holds
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we have
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For the proof of the above inequality it is sufficient to show that

Because of n < 3r — 1, we have

Therefore

It is not hard to see that
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Since 5% > 2 and % > 2, the above inequality holds.

E(Kp.y) > % ((:f) + <T " 1) (n—2r + 4)) .

Thus



We claim that (,"))(n —2r +4) > 3(7).

To prove the above inequality it is enough to show that n(r — 3) — 2r2 + 7r — 3 > 0. Since
n > 3r — 1 we have n(r — 3) — 2r2 +7r — 3> r2 — 3r > 0. Hence we conclude that

BE(K,) > 2(’:) > 2((1’) —1).

Lemma A. [1, p. 56] If G is regular graph of degree k of order n, then
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which G is complement of G.

By Lemma A the complement of Kneser graph, K,,.,,has eigenvalues \g = (’;) - (";T) —1 and
Ai = —1— (=1)4(" 77" with multiplicity (7) — (;",), fori=1,...,7

Now using the previous lemma we prove that the complement of Kneser graphs are hyperener-
getic.
Theorem 2. The complement of the Kneser graph for r > 2 is hyperenergetic .

Proof. If r = 2, then E(K,.2) = L(K,). Therefore by Proposition 7.2 of [4], F(K,.2) is hyper-
energetic. Let r = 3, it is not hard to see that E(Ky.3) = n(n—3)(n—4), so E(Ky.3) > 2((3) —1).
Now suppose that r > 3 we have
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If r is even, then we have
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and if r is odd, then

E(Kpr) = E(Knr) = 2(” N r) + 2§(—1)i (7;)

Thus by Theorem 1, it is sufficient to show that for even r, —2("") + 231 (=1)'(}) >

K2

0 and for odd r, —2(".") + 22:;11(—1)%?) > 0. By induction on r one can easily see that
S (=1)(7) = (=1)"(""). Now, the proof is complete. O
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